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VIIL  The Differential Equations of Ballistics.

By C. A. CLemMmow, Research Department, Woolwich.

(Communicated by Sir GEoreE Hapcock, F.R.S.)
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;5 > 1. Introduction.

2 : The differential equations arising in most branches of applied mathematics are linear
= equations of the second order. Internal ballistics, which is the dynamics of the motion

MO q y

T O of the shot in a gun, requires, except with the simplest assumptions, the discussion of

=w non-linear differential equations of the first and second orders.

The writer has shown in a previous paper* how such non-linear equations arise when
the pressure-index « in the rate-of-burning equation differs from unity, although only
the simplified case of non-resisted motion was there considered. It is proposed in the
present investigation to examine some cases of resisted motion taking the pressure-index
equal to unity, to give some extensions of the previous work, and to consider, so far as
is possible, the nature and the solution of the types of differential equations which arise.
A discussion of the resisted motion involving a general rate-of-burning law would appear
to be too complicated for any attempted treatment to be profitable, so that the investi-
gation is divided into two parts: (a) resisted motion with a linear rate-of-burning
law « = 1; (b) non-resisted motion with « # 1.

The internal ballistic problem leads to linear differential equations only in the simplified
case where direct proportionality between the rate-of-burning of the propellant and
the pressure is assumed, and consideration of all perturbations such as band resistance
and friction is excluded. In all other cases non-linear equations are met with, and,
since, for example, the problem of resisted motion will surely be conceded to be of
importance to the practical ballistician, it is thought that some account of the theory
and the attempts at its elucidation will not be without value.

- Differential equations of a type somewhat similar to those discussed in this paper
arise in astrophysical investigations ; thus EMDEN’S general polytropic equation for the
equilibrium of a gravitating gas sphere ist

1d dy .
m&(‘ﬁ@)w =0,

a2 -
BTy =0
* ¢ Phil. Trans.,” A, vol. 227, p. 345 (1928).
T Vide FowLEr,  Mon. Not. R. Astr. Soc.,” vol. 91, p. 63 (1931).
VOL. CCXXXI—A 701 20 (Published January 31, 1933,
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264 C. A. CLEMMOW ON THE DIFFERENTIAL EQUATIONS OF BALLISTICS.

If n = — 1 this agrees in type with one of the equations of Internal Ballistics, although
this value of m, of course, precludes the equation from having any direct astrophysical
meaning.

It is as well to state here that, so far as is possible, the symbols and notation employed
will be the same as in the writer’s previous paper (loc. cit., p. 1) which will be denoted
throughout by I.B. Frequent reference will be made to it, and the present paper is to
be regarded largely as a sequel.

2. The Resisted Motion tn the Gun.

When a shot moves along the bore of a gun under the pressure of the propellant
gases there is considerable resistance to the motion arising principally from the friction
between the driving band and the bore, as well as, to begin with, the resistance offered
by the band during engraving.

In the idealised ballistic problem such resistance is neglected, but it is of obvious
practical importance to consider its effect. It is essential for the purpose of simplify-
ing the analysis to devise a method of continuous integration of the equations of motion
of the projectile, so that no distinction is made in form between the resistance to motion
during band engraving and that arising afterwards.

The linear rate-of-burning law of propellant is assumed, so that « = 1, and the resist-
ance to motion is denoted by R.

We use the equations of Scheme I: (11) to (13) of I.B., p. 352, which, introducing
R and putting « = 1, become '

p=12¢(f)/=

D df/dt — — gp
w BPr/d? = p dy/dt = p — R,
where v is the shot velocity and R is regarded, at present, as an unknown function of f,
since in the above equations f is taken as the independent variable. (For the definition

of f see I.B., p. 350.)
From these equations, eliminating ¢ between the last two we have

m%u+%%, ............. (1)

and differentiating the first with respect to f it zhay be written as

do_ d[$()]_ Do o
7= 75 2 @

Eliminating p between (1) and (2) gives

BAH0 +25]- R0 99
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C. A. CLEMMOW ON THE DIFFERENTIAL EQUATIONS OF BALLISTICS. 265

which becomes

RS(NGE+|Bé N —Re(N+ 580 | T

b: +—[R¢ (f)—R'$(fll =0, . (3)

+;\32

primes denoting differentiation with respect to f. We now proceed to investigate a form
for R which will permit of the integration of this equation.
If the equation has a first integral, it must clearly be of the form

dv
df
where L, M, N are functions of f.
Differentiating (4) and replacing v* where it occurs by
we find

(Z; L— Mv>/N
d2v

g7 = (1 — LN/N) 4 (' — MN/N) o M+2N0+N/N)df. T

=:,L+M’D+N?)2, ..........‘.-(4:)

Comparison with (3) gives, writing ¢ (f), ¢’ (f) as ¢, ¢’ for brevity

1 o
’ 2
M'“Ml\%*_,%@,% S, e (6)
SE SL S

four equations with four unknowns L, M, N, R.

The last equation gives N’/N = — ¢'/4, so that from the third, M = R’/R, and from
the second (d/df) (M¢) = — D2/Aup? = — ¢, say, so that M¢ = A — ¢f, where A is
an arbitrary constant, and therefore R/R = (A — ¢f)/¢.

Finally, the first equation of (6) gives

d _D
;l?(lnﬁ)—“g(A o — ¢'),

1.6.,

D :
Lé =B + 2 (Af — lof> —
é F“B(f 5of* — ¢),

where B is another arbitrary constant.
Thus L, M, N, are determined and R can be found when ¢(f) is given.
202
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266 C. A. CLEMMOW ON THE DIFFERENTIAL EQUATIONS OF BALLISTICS.

The motion begins when the gas pressure p is equal to the resistance R, so that
initially f has a value f which is less than unity, since some of the propellant must be
converted into gas before motion starts. When the propellant is all converted into gas
f=0.

It is natural to expect the resistance to diminish as the motion proceeds so that R
should decrease as f decreases, or R’ (= dR/df) should be positive, 7.e., we must have
A > cf, since f decreases from f, to zero during the motion.

Taking ¢ (f) = (1 — f) (1 + 6f) (vide L.B., p. 350), we find

Adte ~N
R — 1 -4 ef :(-1‘—:0)
(1 —f)+
with ; _
o Ce? . o (7
R=——-""— for 6 =0 Yot
=
and
D2
c= PNTRCH J

A, C, being arbitrary constants.

When the propellant is completely burnt, f = 0, and so R == C for any further travel.

There are apparently three constants A, B, C left arbitrary, but the constant C can
be determined in terms of A by consideration of the fact that if p, is the shot-start
pressure and f, the corresponding value of f, then R = p, when f = f,.

Also from the first of the equations of Scheme I quoted above, p, = A(f,)/! since [
is the initial value of & (for definition of 7, see 1.B., p. 351), so that

A (fo)/l=C(1 4+ efo)ﬁf‘%/(l _.fo)‘i—;-f,.

The constant B is also determinable in terms of A, as will appear shortly.
Equation (4) now becomes

af Mﬂ+ et

o D(Af lcf2>+A——cfv__‘ D 2 L (®)

$ $ 226 ¢
which is of the R1ccATI type, so that, if any particular solution is known, the complete
primitive can be obtained by quadratures.

The initial conditions are f = f,, v = 0, and dv/df = 0 (equation (1) ), since R/p =1
when v = 0, and substitution in (8) gives B = D[¢ (fo) — Afy + 3¢fs2]/ 18, so that the
only constant left arbitrary is A.

A particular solution of (8) is » = D(x — f)/uB, where « is given by

D D , D _n_
mwk P-B'KA B =0,
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C. A. CLEMMOW ON THE DIFFERENTIAL EQUATIONS OF BALLISTICS. 267

which leads to

_A+ VA cfo + 2¢¢ fo | (9)

---------

The question of sign will be settled later.
The integral of (8) is found in the usual way by writing v = D (x — f)/u8 + 1/w,
where w is the new dependent variable, and the equation for w is, after reduction,

@;—D 1 _A.—CK
af  2x84(f)  4()f)

The initial conditions are f = fy, v =0, 7.e., 1/w = — D (« — f;)/8, and the solution
consistent with these is

0t (A= 0 0t ol

w.

D (fo —«) 1@ —fo) (1 + 6f)
D (1= 1 "1 4 oy o — gy
R fen A A ZA e R AR
where

¢ =A—ckc=+VA—c)+2¢(f). . ..... (11)

The integral in (10) is easily found, and we have

_ up 1 ¢ (1——f)( +ef)T <

w__[(fo"‘" \){(1 — Jo) ( f} +2 ] 12

so that the velocity v is given by

(13)

Dl _
i

2¢/
C
1+<ﬁ%"—ﬁx ‘Jll--f0 ieg};}ﬁ—

The question of sign in (11) remains to be settled, but, writing ¢’/c = 4 y, where v is
positive, we find « = A/c F v, and

2¢'/c 2y = + v ——fo +A/c.
fo—« fo—Afect v +v+fo—A/c

The two expressions for v, given by (18) with the alternatives for ¢’ from (11), are then
easily seen to be identical, and we have

— 1=+

_D|A 2y
v_iz._ 'E—f“‘“Y'}'l_}_K"(l_ >1-:a s e e e (14)
i \T¥ef
with
Yy Y ‘—fo + A/c <1 + ef0>1+o
Ty +fo—Ae\1—f,
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268 ¢. A, CLEMMOW ON THE DIFFERENTIAL EQUATIONS OF BALLISTICS.

Kquation (1), using (14), gives the pressure p directly in terms of f, whence the
maximum pressure can be deduced theoretically, although the equation determining
the value of f at maximum is, clearly, only solvable by trial.

The shot travel in terms of f is obtained by integration from (2) and so the problem
can be considered as solved.

For the unresisted motion, as is well known, we have v = D(1 — f)/up, so that
A =¢, fy = 0 and, therefore, y = 0.

The resistance law given by (7) appears to be the only one which will lead to an integral
solution in finite terms. ‘

It can be given a variety of expressions by alteration of the value of the constant A,
except that, for resistance diminishing as the motion proceeds, A must be greater than
cfo-

The analysis given above is useful so far as it permits a study of the ballistic effects
of resistance to the motion, such as the effect on maximum pressure, the position
of the shot when the propellant is completely burnt, ete.

3. The Case of Constant Resistance.

This case is of importance because it includes the study of the motion of a heavy
shot propelled vertically upwards, like the piston of a cylinder, by the combustion of a
charge of cordite beneath it.

If the acceleration in such a motion could be determined experimentally the effective
pressure on the shot could be calculated absolutely as a mass-acceleration, and thus
some light might be thrown on the true pressure-density relation for expanded pressures
(vide 1.B., pp. 349, 350). Friction, of course, should be reduced as much as possible,
or could be fairly accurately allowed for at low velocities.

Such experiments may be regarded as the logical extension of close-vessel investiga-
tions.

When R is constant equation (3) reduces to

d2v ,
s+ s (G o) =0 (15)
where ¢ = D/AB, b = D/u., so that ab = ¢ (vide equations (7) ).
The absence of R in (15) is to be expected as, when constant, it can be eliminated

from (1) by a mere change of units.
By writing w = av + ¢’ (f), (15) becomes

¢(f)df2 +w<df—{—c> .......... (16)

where ¢’ = ¢ -+ 26, taking ¢ (f) = (1 — f) (1 + 6f).
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C. A. CLEMMOW ON THE DIFFERENTIAL EQUATIONS OF BALLISTICS. 269

At the start of the motion v = 0, dv/df = 0 as before, and f=f,, say, (fo <1),
where f, is calculated from the amount of propellant burnt to make the pressure equal
to the resistance R.

Thus, for the equation (16) the initial conditions are

f=f0> W= ‘16, (fo): d’w/df—"‘— ‘IS” (fo)

The range of fis from f,, where 0 < f, < 1, to f = 0, the value at burnt.

Since f # 1 the singularities due to the term 1 — fin ¢ (f) are avoided, so that there
is an a priors possibility of constructing a solution valid for the range required.

The equation (16) has no first integral of the type (4), unless, as can easily be shown,
¢ = 20, 1.e., ¢ = 0, which has no particular ballistic importance, so that there appears
to be no possibility of an explicit integral being obtained as previously.

We consider, to begin with, the equation (16) for the constant-burning-surface shape,
v.e., with ¢ (f) =1 — f and with ¢’ = ¢, since 6 = 0.

It will be convenient to take ¢ (f) =1 — f, t.e., the fraction of propellant burnt, as
the independent variable and we shall write it as .

Then, using suffixes to denote differential coefficients with respect to £, equation (16)
becomes

Ew, +wl(c—w)=0. . .. .. . .. ... (17)

Now, in this case, ¢’ (fy) = — 1, 6" (f,) =0, and so the initial conditions are f = f,,
ve,§E=1—f, =&, say, w= —1, w, = 0, and &, is a small quantity, since usually
fo is only slightly less than unity.

A formal solution in series consonant with the initial conditions, is therefore

(& — &)

W=

where (w,)o, (w3)o, €te., denote the values of w,, w,, ete., for & = &,.
These initial values of the differential coeflicients can be calculated in succession from
(17), and we have

(ws)e = ¢/&y, (wg)o = — 2¢/Eq%, ~ (wy)o = 3! ¢/Eg® — c¥/E¢?,

and, in general, we may write

o —1)! At A
(o = (— 1y Loy el WBE L 1)
Eo €o &o
where the coefficients ,A,, ,A,, . .. are functions of n, and the last term of the series

" n n—1 n+1
(19) 18 nAyﬁ'/E_ﬁ if » be even, and ,An_1¢72 /Eo_ 2 if » be odd.
2 2
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270 C. A. CLEMMOW ON THE DIFFERENTIAL EQUATIONS OF BALLISTICS.

Putting n = (& — &o)/&,, we have

C =20l )y =T &7 ()0 =T (1) (0 — 1) ! cB + ,AscPE + 1Ay PE -+ ...),

n ! T at
o0 that the solution (18) can be expressed in the form

’ll/"f‘l:Cao(;f'“'g;’f“zf...)’i"Ozao (\;4"‘ 4""‘5,715‘*’ \>'

+c3£03<ﬁéifn6+%§nf +...;) N ¢~ 1))

The coefficient of c&, is  — log (1 -+ 7), provided |y| < 1, and the coefficients of ¢2£?
and ¢*£3, can also be found without much difficulty, but the result of importance is the
form of the solution (20).

It shows that it is possible to assume the form

wH1=ctyg . F(n)+ .G+ . H#n)+... .. .. (21)

F (1), G (1), H (1), etc., being functions of 1 to be determined.
With % as the independent variable, equation (17) becomes

(1+) Y tw \k-———) 0, v v vt (22)

where k = c&,, and so is usually a small quantity, and the initial conditions are n = 0,
w= — 1, dw/dn = 0.
These are satisfied if, for =0, F(n) =G () =H () = ...==0 and

F (n)/dn = dG (n)/dn = dH (n)/dn = ... = 0.

Substituting from (21) in (22) and equating the coefficients of k, k%, &*, etc., to zero, we
have the following series of equations :—

1+2)F—(0—-F)=0
(L49)G -G +FA—F)=05 ...... (23)
(1+W)H2+H1‘FG1+G(1"‘F1)=O

ete., ete., where Fy, F,, ete., stand fordi (n), pc F (), ete.
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C. A. CLEMMOW ON THE DIFFERENTIAL EQUATIONS OF BALLISTICS. 271

Integration of equations (23) gives

F=1v—log(l+mn)
G=—mn+4log(l 42)+ % {log (1 + =) + % {log (1 + )}

B3 Blog (1) + 15 fog (L4 — d o (L [

(24)

— % {log (1 + )} — g5 flog (1 + n)}° |

and clearly these solutions are in agreement with the series in (20).

But the series in (20) would have a sum for only a limited range of v ; thusthe series
coefficient of c£, can be considered as equivalent to n — log (1 + ) only if y =< 1, ¢.e.,
if £ = 2¢,, whereas the function F(n) exists for all values of .

It is not difficult, of course, to apply the process of analytic continuation to the
series in (20). ’ ‘

Thus

\

5 3+4 =1—1log24+9—1—1log(1+ 2)

in the sense that the coefficients of 42, 43, etc., in the expansion of the right-hand side
are still 4, — 4, 1, ..., so that the differential equation is satisfied. But this expansion
is now legitimate for values of # = 8, and further re-arrangements can be made to
extend the range of values of y within which expansion in series is possible.

There is thus a justification for the method of solution of the differential equation
expressed by (21) and (24).

The above treatment can be applied equally well to any shape of propellant, except
that the determination of the functions F, G, H, etc., becomes more difficult.

For the purposes of ballistic calculation the value of » ranges from zero to (1 — £)/,*
the value at the end of burning of the propellant, and the number of functions F, G, H,
etc., required, will depend on this latter value (and that of c).

It is easily seen that F (v)is always positive and increases with =, that G (1) is always
negative but increases in absolute value as » increases, although remaining always less
than F (y).

The behaviour of the function H () is not so obvious, but calculation shows that it is
negative and increases in absolute value with .

Any given numerical case must be treated on its merits, and actual calculation alone
can show the number of terms of the series (21) required.

A first approximation to the solution for small resistance is perhaps interesting.

* In the case considered, (1 - &,)/&, = fo/(1 - f,), so that, if f, = 0-9, for example, the values of N
to be considered range from 0 to 9.

VOL. CCXXXI—A. 2p
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272 C. A. CLEMMOW ON THE DIFFERENTIAL EQUATIONS OF BALLISTICS.

Taking only the first term of (21) we have, replacing » in terms of £,
w4+ 1 = ¢k, ( — & — log = ) e e e e (244)
Zo 3 v

or; translating back into terms of ) and f,

v=~5 Ifﬂim— f - (1 — fo) log ! ——f ] ........ (25)
' - 1 ‘""J‘ 0.
As fo > 1 we get v =>b(1 — f), the usual formula for non-resisted motion. To this
approximation we find also (details omitted)

G2 - ,
log § = 0(fo =) — b1 = f) (lg =4 |,
and the equation for determining f,. the value of f at maximum pressure

oo = = 0 = log k.

Thus the shot travel to the time of completion of burning of the propellant is given by
Iog—wch(ngc] - fo)llog (1 — [P

corresponding to log /1 == ¢ for the case of no resistance, showing that, with resistance,
the propellant charge is burnt at less travel.
The equation for f,, also shows that f,, < fo — 1/c, 1.e., <1 — 1/c the ordinary value
for non-resisted motion.
Hence the maximum pressure is increased by resistance, as is, of course, to be expected.
There is one point which should be mentioned in connection with these approximations.
Equation (1) expressed in terms of w and £ is

w‘ Re
p_c-——-(—iﬂh e e e e e e e e e e (26)
dg

‘which gives, with the approximation (24a),
p = RE/E,.

Now we have py=R =11 —f,)/l= A&/, and Rﬁ/io obviously increases to a
maximum R/&,, since the greatest value of £ is unity, the value at burnt.

Hence this gives a maximum pressure equal to 2/, which is the closed-vessel pressure,
and the result cannot be correct.
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C. A. CLEMMOW ON THE DIFFERENTIAL EQUATIONS OF BALLISTICS. 273

The reason is that the approximation.is weakened by differentiating w as required
in (26). The process starting from (25) involves an integration, since

_dw dx 2B (1L —f) dx

A A

SOCIETY

OF

A A

SOCIETY

OF

If the second term G(4) in (21) is included the value of the maximum pressure is found
to be B
A : e\/c%
Po=T % = .. (e=2T18L),
eV E —1— =
gy
which, for very small values of £y, reduces to the usual value p,, = a/le. If the resistance
to motion is not small the problem apparently can only be attacked by direct numerical
integration of the differential equations involved.
4. Further Consideration of the Equations Pertaining to the Pressure-index Burning
Law.
In the previous paper (vide L.B., p. 354, equation (22) ), the fundamental equation
was obtained in the form
dz
Y 7 = b (),
where 4y = z'~*, and ¢ (F) = ¢ (f) where F = fdf/(q%f) )%
For a constant-burning-surface propellant the equation can be put into the simpler
form
=" . ..., T e e e
Y 5 (27)
where m = 1/(1 — «) (I.B., p. 356, equation (33)). -
Tt will now be shown that this equation can be integrated by quadratures for certain
particular values of m the restriction « < 1, 4.e., m > 1, being abandoned.
‘Equation (27) is homogeneous of order n where # = (m + 2)/2 so that, writing
- “m+2
x=é, y= ze 2 ' * it becomes
d2z ndz  mm+2) 1 , .
W“*"(m—* 1)3—6—{_ 4 z-—“g, ...... e « (28)
which can be reduced to an equation of the first order.
* Small letters z, y, # are written here for convenience, and » and z no longer have their original meaning
of shot travel +- 7, and fraction of charge burnt respectively.

2P 2


http://rsta.royalsocietypublishing.org/

A A

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A \
I

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

274 C. A. CLEMMOW ON THE DIFFERENTIAL EQUATIONS OF BALLISTICS.

Equation (28) can be integrated if m = — 1 or m = — 2 as well as if m = 40
(corresponding to « = F o).
We shall leave aside for the moment the question of initial conditions.

(@) m = —1,1.e, o =2. The equation becomes
d*z 2z 1
a—éE—Z:'z', P T T T T R (29)
where z = ¢, y = 26 and the primitive can be expressed as
0= loga = S - dz +B, .. ... (30)
<Z +2logz 4+ A ) ¢
A, B being arbitrary constants.
(b) m = — 2, v.e., « = 3/2. The equation is
dz _dz _ 1
TR IR e (31)

with z = ¢, y = 2, so that only a simple change of independent variable has been
made.
A further transformation z = e’ changes (31) to

2 20

6

S
X

e

+ T,

&.lg,
DheX

3

SN

and, finally writing 6 == f (), brings the equation to the form

| [ {0 L e
ozaz‘*‘[f( ]EE T

Choosing f(£) so that the coefficient of d¢/d% vanishes, we have f’ (£) = ¢/, and the
final form is ,

2
%: % ............. . (32)

This integrates, giving

_ [ dg
+ & -—j m -}- constant,

@ being an arbitrary constant.
Writing ¢ = e this becomes

4§ == _\Z_gjx edy, -+ constant = ﬁF (x) + constant, say. . . . (33)
a a
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Now ¢ = ze™’ = y/x, so that y2 = log (ay/z). Also ¢ /® = — £ - constant, s.e.,
6 = f(£) = — log (b — E), where b is another arbitrary constant. Thusz = ¢’ = 1/(b—&)
or £ = b — 1/z, and the final form of the solution is, from (83),

4+ (b — l) == _\_2:.2_ F < /\/@;ZO -+ constant. . . . . . . (34)

Hy

The above cases appear to be all that can be dealt with directly by quadratures.

5. The Reduction of a First Order Equation of the Briot-Bouquet Type.

‘We now proceed to transform (27) or rather its equivalent (28) to a first order equation
of the Briot-Bouquet type.

The characteristic feature of such equations is the indeterminancy of the differential
coefficient at the origin, and it is known that unique regular integrals can be con-
structed, vanishing with the independent variable, provided certain conditions are
fulfilled.*

The initial conditions relating to equation (27) are x = 0, y = ¥y,, dy/dx = 0 (L.B,,
p- 357), but « = 0 corresponds to 6 = — o which is inconvenient.

m -2
Also1/z=1¢ 2 'Jy, and so, if « < 1, v.e., m > 0; 1/2 is zero initially.
Further it is found that

de _z /[, dy m+2 -
de*y<wdw 2 y/)’

and therefore d6/dz vanishes for z =0, y = y,, dy/dx = 0. Hence in the case of
« < 1 we write z = 1/¢, d0/dz = in (28), which becomes

gaé‘g_g:m(m,}_l)gﬁz_wfkﬁ)ﬁ-{—g%ﬂ B 1))

with £ = 0, n = 0, initially.
A further substitution n = v£ reduces this to

d i 2
E&%):—-v-(m-}-l)W*}*LEz—-"—z—@f——z]vs, ..... (36)

and the solution is required in the neighbourhood of £ = 0. Assuming
| v=A, + AjE 4 AE2 4 ...,

substituting in (36), and comparing coefficients we have, since the constant term must
vanish,

Ay + (m 1) A 4 2 (m4+ 2 AP =0,

* An exhaustive treatment of the subject is found in Forsyra’s “ Theory of Differential Equations,”
vol. 2, chap. VI. Cf. also INcE, “ Ordinary Differential Equations,” chap. XIII.
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276 C. A. CLEMMOW ON THE DIFFERENTIAL EQUATIONS OF BALLISTICS.

whence ‘
Ay =0,—2/m or —2/(m + 2).

It is clear that if A, = 0 all the coefficients vanish so that the solution becomes

illusory, and to settle the choice between the remaining values we proceed as follows :
‘We have
1= 0E = A& + A3 4 A48 4, ...,

since A;, A,, A;, ete., are found to vanish. Hence

ae A,

ZoTrEERE-
8o that

A A
H = Aglogz — =2 __ 24—
const. - 0g 2z — o ,
.6,
m+2 A, , "2 A,  mE2
log z = const. + A, log (y/z %) — _2—2 (72 /y)P — —f (x = [yt —
or
Come-2 Ao -2 A m42
log [« (y/x % )~*] = const. — —2—“ (z = /yp — < (2 /[y — .. (37)

mt2
Equation (87) must be satisfied by the initial values z = 0, y = y,, so that z(y/z 2 )~
must not vanish with z, otherwise the loga,rithm Would involve a negative infinity.

With A, = — 2/(m + 2) we have x(y/a; ) Y™ F", which avoids the difficulty,

8o that this is the correct value to take. Wlth Ay = —2/(m + 2), equation (36) gives
4 7
A e
T (m - 1)(m - 2p
_ 4 (5m - 8)

. (38)

4

'S

"~ (m 12 (m + 2)8 (2m - 3)

. 16 (10m? + 34m + 29)
(m-{— 1) (m + 2)* (2m + 3) (3m + 5)

6

etc., ete.
m42

In the notation previously used (I.B., p. 358) we put y = 4, [ (2), where ¢ =z 2 /y,?,
whilst in the ballistic tables (I.B., p. 372) z is replaced by Z, where

p BB —2)y (m + 1) (m + 2)Z.
1 — oy
With these changes, equation (37) becomes
logﬁ(Z)=a2£2+a4f4+a6£6 co e e e e e . (39)
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where, on the right-hand side, [ is written for [ (Z), and
@y==1, ay==(bm-8)/2(2m -+ 3), as=4(10m? - 34m - 29)/3(2m + 3)(3m - 5) ..

Equation (39) shows the precise form of the solution. Equation (36) is not in the exact

Briot-Bouquet form since v does not vanish with c,, but WI‘ItlIW W, = m + 2, v,
= £2, 1t becomes
dw 1 . 2 ) 6 (m —2)
'h T mre mrt T mr T tmre”
— 6 2 m 3 2 - 3 40
e gm0

= ¢(X ’W), say,

and here w vanishes with %.

This equation is of the Briot-Bouquet type and is known to have a unique regular
integral vanishing for y = 0, which exists over a finite part of the region of existence of
the function & (x, w), provided 1/(m - 2) is not @ positive tnteger (vide ForsyrH, “ Theory
of Differential Equations,” vol. 2, pp. 143-146).

Since 1/(m -+ 2) = (1 — «)/(3 — 2«), the excluded values of « are 2, 5/3, 8/5, 11/7,
etc. The solution otherwise is then of the form w = a,x - @, - . .., which leads
to the solution for » originally found.

6. The Case of a General Burning Low depending on the Pressure.

In previous work it was assumed that the rate-of-burning was proportional to a
power of the pressure, but, if the function of the pressure which measures the rate of
burning remains unspecified, the equation connecting them can be written

‘_if: —BUM@) e (41)

say, where the form of the equation and the constants D, 8 are retained.to permit of
comparison with previous results.

We cannot eliminate p as formerly (vide 1.B., p. 354), and so an equation connecting
p and f must be constructed, which can be done in the following manner.
We have

de __dw df - )

T A v df
so that

d?z B2

wE=m @ f[ (p)df} m

by LB., equation (18). Also ap = 24 (f) (L.B., p. 352, equation (11) ) whence dx/df
can be found and substituted in the above to give an equation connecting p and f.
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It is found, after reduction, that introducing the function F (p) given by

Y@ =pPF@F - e o (42)

the following form is arrived at

Ep A 4
pZh i1 |(B) - 1 5B T 1] %
| g ( P
THYTITOrG #3)

where ¢ = D?/a .82 as before.
Some general comments will be made upon this equation, and others, later in this
paper, but at the moment a special result of some interest will be obtained.

Returning to the previous assumption of rate-of-burning proportional to a power of
i+ 3

the pressure, take F (p) = kp*, so that § (p) ==k p = by (42).
Then equation (43) becomes

o1 B- -1 L

H t) 1 "
e P

Py s L Tk

which can be written

_%—} nzldp N _ §[>r (f) d _ M‘f) . cpl-nw
P df[ df] z (2 1)—-———-103}-’ P+ =0

so that, writing ¢ for p 2, the equation is

dq__ 4 dg _ 4 ¢ (f) g 11
Gt 0TIy Sy S

Finally, changing the independent variable to F, where dF/df = —[¢ (f )]Lf we

have

d2 1 ¢ (f) 1 (; ¢ ;l.'::. e e e .
7D e AR F7a ) T A “
With ¢ (f)=1—f, wehave " ()= 0 and F = =01 —NT = LT
so that N
qjlquz . %(%2 >—m ....... (45)

We thus return to the familiar form of equation (27).
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Now consider the two forms, equations (27) and (45), the latter being written as

q(d?q/dF?)x F‘%Tz:', putting (» + 3)/2 =«. The ballistic problem may be considered
as solved when either of these equations is integrated, numerically or otherwise, since
the various ballistic elements may be calculated from the solutions so obtained.

If « =5/4, for example, (45) gives ¢ (d?q/dF?) « F2, whilst (27) takes the form
y(d?y/da?) = 2? for « = }. Thus the cases « =}, « = 5/4 are mathematically equi-
valent.

There are similar correspondences between the cases o =0, a =4/3; « = 2/3
« = 6/5, etc., so that all the cases for values of « from 0 to 1 are paralleled by cases
from « = 4/3 to a = .

It is interesting to notice that for « = 2 the cases coincide, while for « = 8/2,
« = 4 o they interchange with each other.

These are the cases integrable by quadratures previously discussed (p. 273).

7. The Connection between the Equation for Resisted Motion and that expressing the case
' of the General Burning Law.

In a previous section the case of resisted motion with rate-of-burning proportional to
pressure was discussed, but to permit of comparison with equation (43) above it is
necessary to assume the resistance R to be a function, y(p), say, of the pressure p.

Proceeding as before from equations (1) and (2) the equation connecting p and f is
found to be

@p _L/dp\¢ | ¢ (Ndp ¢"(f), ¢ e
df* p<df>+¢(f)df s ? ¢(f)[x(p) pl=0. ... (486)

This is similar in type to (43), but to agree with (43) we must have F (p) = k/p, where &
is a constant, so that by (42), ¢ (p) = p.

Also we find that y (p) = (k — 1) p/k, so that only in the simple case of rate-of-burning
and of resistance directly proportional to the pressure are the equations (43) and (46)
the same.

If we attempt to reduce (46) to an equation of the Riccatr type as previously, by choice
of the function y (p), we must inevitably be led back to the solution given in the earlier
part of the paper (§ 2), but, though of somewhat academic interest it is true, thereis a
choice of y (p) which permits of integration.

For the equation (46) can be written (using primes to denote differentiations)

d<P'>+£ p_¢ _cx@—pr_,

dl\p/ " F 0 b p ’
so that the substitution p = e gives
qu+£ ,_ﬂ_g_)C(e“)——eq::O'

s1 773 @

VOL. CCXXXI.—A, 2 Q
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This equation becomes linear if y (¢?) = e¢? 4 ke’q, where £ is a constant, t.e.,

% (p) =p (1 + klog p),

and this form for the resistance leads to the equation
$q" + g —ckg=¢". . ... ... ... (47)
With ¢ (f) = (1 —f) (1 4 0f) this equation is
(1—=f)Q+0f)g" — (1 —06+20f)¢g — ckqg + 26 =0,

and, changing the independent variable to v, say, where f =1 — ! + —— = it becomes

0 (1 — )3%4(1_2)% q-[—2—0 ...... (48

Omitting the constant term this is the differential equation of the hypergeometric series

(“,BaY, )WlthY-——l w, B =+ /\/1_4079*

One solution is F(«, 8,1,7) and sincey = 1 the second solution contains a logarithmic
term and can be found by the FRoBENTUS process.t

The solution of (48) can, theoretically, be found by putting ¢ = F («, B, 1, ) » and
solving the resulting linear equation for w, although the integrals involved appear
intractable. (N.B.—There is no bother about the convergency of the series, since the
maximum value of 7 is 6/(1 + 8), (f = 0), which is < 1.)

As usual the case 6 =0 leads to simplifications, for then equation (47) becomes
1—=f)qg" —q — ckg=0. Putting now ck (1 —f) == we have ‘

vzdn + y 10

a solution of which is ¢ = J, (2¢?), so that the complete primitive can be expressed in
terms of BESSEL’s functions of zero order.

8. A Method for the Solution of the Typical First Order Differential Equation of Ballistics.

The preceding discussion of various ballistic problems has shown that in many cases
the problem can be reduced to the solution of a non-linear differential equation of the
first order, the general type of which is the following

%Ig =Py +Py+Pu2+ Py, . . ... (49)

where Py, P;, P,, etc., are functions of z (¢f. equation (36) ).

* Forsyra, “ Differential Equations,” chap. VI.
T Forsyrs, loc. ett., pp. 251, 252.
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We shall find it possible to consider the more general form
%=P0+P1y+P2y2+P3y3+P4y4+ esny « . 0 s o (50)

where the number of terms on the right-hand side is not limited to four, but it is of
interest to notice that equation (49) can be reduced to the ““ canonical ” form

aY _
=P HPX, . (B1)

as follows.
The substitution y = Yf (z) + ¢ (z) where f(z), ¢ (x) are functions to be determined.
denoting differentiations by primes, and the functions by f, g, gives simply

f % = (=9 + Po + Pug + Pog® + Psg®) + Y (— ' + Puf + 2Pafg 4 3P4 fy?)
+ Y2 (P.f - 3P, f2g) 4 P, f2Y°.
Choosing ¢ = — P,/3P; makes the term in Y? vanish, and then the coefficient of Y is
zero if f'/f = P, — P,?/3P;, so that f () can be determined by integration.

Finally a change of the independent variable leads to the form (51).*
Returning now to equation (50), we assume a solution in the form

CODSt. = Lo 'l"‘ Lly + L2y2 —I"' ooy

where L, L;, L,, etc., are functions of z.
Then the following identical relation in ¥ must hold

0= + Ly + Ly +...) + (In + 2Ly + 3Lg? + ...) (Po + Pry + Pay® + ..0),

primes denoting differentiations with respect to .
Thus, to determine the functions L, we have the following series of linear differential
equations
L'y +PL; =0
L'y +2P,L, + P, Ly =0
L'y + 8PoL;s + 2P, Ly 4 Poly =0 (* ° (52)

L+ nPL,+(n»—-1)PL,_,+(»—2)PL, o+ ... +P,_ L, =0
Tt is clear that L, can be expressed in terms of Ly, L, ... L,™ in the form
L, = XLy + o XL + oo X, Lo™, . .. ... (53)

X1, nXa, etc., being functions of x and n.

* This transformation is cited in a paper by M. Kouvensky (‘ C. R, Acad. Seci.,” Paris, vol. 193, pp. 571,
572 (1931) ), who gives a reference to P. AppELL (‘ J. de Liouville,’ 4, serie 5, p. 370 (1889)).
2 Q 2
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ThuS 1X1 - - ]./Po, 2X1 _ (Plo - PoPl)/Pos, 2X2 - 1/2P02, etC., etC.
Substituting for L, from (53) in the last of equations (52) we get

[n—lXILHO + n—lXZL/HO + s '+' n—an—lLO(n)] + n. PO [nXI LIO +'nX2L”0 + s
+ X Lo™] + [d% (2=1Xa) L'y + c—l% (X)) Lo+ oo + o%c (p=1X-1) Lo("—”}
+ (n - 1) Pl [n—leLIO + n—-lXZLHO + oo + n-—an-—lLo(ﬂ—-l)] _l— e + we=0. . (54)

Equating to zero the coefficient of L,™ gives

nPO . an + n—~an-—1 = O:
whence

— 1)
X, = (n_r'P% e (55)

Similarly, from the coefficient of L," >, we have
n-an—Z + (-i(%} (n—an—l) + . PO 'an-\-l + (7& - 1) Pl n—lX'n—l = 0)

and, using (55), this difference equation can be solved to give ultimately

X ____ (=" (P — PoPy)
nidp—1 2!(%-—2)!P0"+1 T ST

Proceeding in this way the functions ,X,_,, ,X,_3, etc., can be calculated from
difference equations making use of results previously obtained.

It is not necessary to give the details here, but the following further results may be
quoted :—

X =0 B A ] )
RERTETT P |3 (n—3)! 8 (n—4)!

_(=)~'r ¢ ~__AB As ]
Ros = | T =91 12 —5)1 18 (n =0 o (57)
< (=y-'r D _ 2B 3AC A A
wERmE T P |51 (n—56)1 144(n—6)! 48 (n —T)! 384 (n— 8) !} J
where

A =P, — PP, B =P,P", — PP, + 2P 3P, — 3P’ -+ 4P, P/,P, — 2P2P;2,

etc., so that the functions A, B, C, D, etc., are calculable in terms of the P functions and
their successive derivatives.
Now consider the form of the solution. Using (53), the expression

Lo + Lyy + Loy + ...
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_can be written as

L, + Yy (1X1D) L, 4 y? (eX4D + . X,D?%) Ly + M (sX;D 4 3 X,D2 4 s XgD¥)Lg + ...,

where D = d/dx.
This is equivalent to

(1 + XD & o Xgg?D* + .. + XD - ... )i
+ ¥ (e XqyD + s X2 D? + oo 4 5 1 Xoy"D™ 4 .l )Ly
+ 9 (XyyD + (Xay?D? + ... o Xoy"™ D" - L )L
SIS

Write %,,Xn "D* = §,, and take OXO as equivalent to unity, then, from equation (55),
0

we have

so that
—yD -¥D .
SiLo= (e P) Ly = (¢ B) f() Ly =f (o

=f (x — y/P,).

Similarly, if £,X,_,y" D*~* = S, then by (56),
2

S, = 5 (=1)" Ay D! A yD -2
= 52T (m—2) ! Pyt~ 2PEP,
Hence \
— — A yD ¥V _ Ay < AN
S2L0 o S2f (w) - f< PO/ - 2]-)031‘ v P0>,
since the operator D acts on x alone.
As a further result we quote
— 3 n=2yn—2] " Y\
Sslio E"X""z D", = 6P, 5f < ) 8P "f Py
The solution of (50) can, therefore, be expressed in the form
P AN A < _4
Const. = f (“" P.,) P (” P, > 6P, ol P0> (
. . (58)

(e )~ S )

where, so far, f(z) is a perfectly arbitrary function,
VOL, CCXXXI.—A 2 Q3
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Taking f(x) = « the solution (58) becomes

Dys Kyt
51 Py? 6! P

OOIlSt. =L — l Ay2 + By3 Cy4

B 3T Pe T3TPE Al Py

+o (59)

and it is fairly clear that the solution (58) can be obtained from (59) by expanding the

functional form f <w J Ay \) so that the solution (59) is in as general a form

TR T oI Pa
as is necessary. The successive functions A, B, C, D, K, etc., are clearly to be deter-
mined as follows :—

We have
1X1 = — ]./Po, 2X1 - - A./2! Pos, 3X1 = B/3 ! P05 see

so that we have to try to find the general function ,X;. HKquating to zero the coefficient
L’y in (54) we have

;—w‘ (n-1X1) + 0Py X, 4+ (n — 1) Pln—lXI + (’n - 2) Py Xy + oo + ... =0,
and, putting n = 3, 4, ete., in succession, we get the following series of equations :—
A=P,—PP, A

B:2P0P1.A+2P03P2+P0.A"‘"3P0’-A
=3P, B3 2P#P, A —3.2. 1PF P+ Py B =520 B | (g

D=4P0P1.0—4:.3P03P2.B+4.3o2P05P3.A
+4.3.2P07P4+P0.0,—‘7P,00

o

The law of formation of these equations is clear, so that the functions can be calculated

in succession. .
As an example, taking the form (51), or rather the equation

dy _
= L4y, o o o o oo oo (61)

where y is a function of z, as the equation in this shape leads to simpler results, we
have Py=1, P, =P, =0, Py=y, P, =P;=... =0, and the solution of (61) is
expressed in the form

- . qu__.ﬁ/j Y”ys___"{“/_l’lona v iv+45OYyl .
Const. =z —y + ) 50 + 150 T 1+ 4 oy o (62)

9. Another Form for the Solution of the Equation dy/dx = y* 4 P ().

We may obtain another form for the solution by reversing the series in equation (59).
Denoting the constant by ¢ we have as the solution

a""“w=Lly+L2y2+L3y3 + ey
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which, on reversing the series, gives
y=Mz+ M2+ M2+ ..., . ... ... .. (63

where 2z is written for ¢ — x, and the M’s are functions of . Differentiating (63) with
respect to z,

Ell% = (Myz + M2 4 ...) — M, — 2M,z — 3M; 22 ...

=P+ (Myz + My2® + ...)8

by the differential equation, and comparison of the coefficients of respective powers of
z determines the M functions.
It is found that

M,=—P; M, = — 2

/. ___]- ., — 1 2 1 .
Q_!P’M3_ ——'P ,M4—-—-";1:—-!P +Z:P3,

| 9 '
M, = — =7 Pv - §6P2P , ete.,
and in general M, contains the term — 7—}7 P,

Now it is easily seen that, since z = o — «,

PI 0 PII PIII

—Pr— 57— 5 41

and, therefore, the solution is given as
y=| Pdo+2 (o — a)f — 5 PP (0 — a)f + (%5 PP+ 33 PP (2 — o
+ (= A PP — 5 PPP — PO P (r—a) 4 ... . . (64)
The methods outlined above have been given as an attempt at some general method
of approach to the integration of non-linear equations of the first order, and it is realised

that many considerations have been omitted such as, for example, the question of the
convergency of the series (59) and (64).

10. The Case P, = 0.
If Py, = 0 so that the right-hand side of the differential equation begins with a term

involving y, as in equation (36), the above analysis breaks down.

The same method can be used, however, for if the equation is
(‘% Py P P e e (65)

assuming a solution of the form

Lo + Lyy 4+ Loy® + Lgy® + ... = constant,

leads to the equations L'y =0, I/, 4+ P,L; =0, L', + 2L,P, 4+ P,L, = 0, etc., etc.
Thus L, is a constant which can be taken as zero without loss of generality, and the
functions L, L,, etc., can then be determined in succession.
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The form of the solution is then
Lyy + Loy* + Lgy® + ... = constant,

and the solution which vanishes with x can only be y = 0.
This is known to be the case for an equation of the type dy/dx = y"f(x, y), where m
is a positive integer.*
11. Some General Considerations.

The equations discussed in this paper are, with few exceptions, non-linear and of the
second order, although, in particular cases, reduction to an equation of the first order
can be effected.

In the pure mathematical treatment of such equations it is usual to consider the
variables as complex, and the questions which are dealt with concern the existence, or
otherwise, of regular integrals, and the classification of the singularities of the solutions.

Such singularities may be poles, branch points or essential singularities, and they may
be fixed or movable, i.e., independent or otherwise of the prescribed initial values of
the variables.

In applications to practical calculations, such as occur in ballistics, these considera-
tions are usually ignored, and the solutions are sought by numerical methods, the worker
trusting to the physical nature of the problem as a guide to correct results.

But numerical methods are applicable only to each particular problem in turn, and
the broad survey which, when possible, definite integration of the differential equations
would give is lacking.

It is, therefore, not without interest to examine the equations which arise to see if
they conform to any of the types which are of importance in the mathematical theory.

It has already been shown (pp. 275-278) that the fundamental ballistic equation
for the case of a constant-burning-surface propellant can be transformed into an equation
of the BrioT-BoUQUET type, which is known to possess a regular analytic solution under
certain conditions. These conditions are seen to involve the pressure index «, and
the regular solutions do not exist for certain values of « ; the excluded values, however,
do not lie between 0 and 1, so that all the practical ballistic cases are covered.

This result is of importance as it establishes the validity of the numerical integrals
given in I.B. (p. 375).

All the other problems treated in this paper lead to irreducible second order equations,
as do also the ballistic investigations in I.B. for shapes of propellant other than constant-
burning surface. The chief matter of theoretical interest in such cases appears to be
the occurrence, or otherwise, in the solutions of movable branch points and essential
singularities.

A full and convenient discussion of this problem is given by INcE (loc. ¢it., chap. XIV),
who arrives at a number of typical equations which have all their critical points fixed,
i.e., independent of the prescribed initial conditions.

* Vide ForsyTH, ““ Theory of Differential Equations,” vol. 2, pp. 44, 45, and pp. 63 et seq.
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It is first shown (INCE, loc. cit., p. 321) to be necessary that the form of the equation
should be ‘

@y _p (WY 4 QW
dwz—P<dx> + Qda:_l_R’
where P, Q, R are rational functions of y with coefficients analytic in z, and the ballistic
equations are of this type.

It becomes of interest, then, to examine if these latter conform in any way to the
equations discussed by Ince.

As an example take equation (16), and write it in terms of z and ¥y as

d? d A
s@ L +y (L+o)=0,

where, in general, ¢ (z) = (1 — ) (14 6z), 0 < 6 <1 (L.B., p. 350). The trans-
formation y = 22¢(z) brings it to the form

c_l_z_,_z_
da?

dz | 24" () (dz cz
+2z@+_;‘;&)_)<ﬁ+z2> T =0 e (69
(since ¢’ = ¢ -+ 26 and ¢" (¥) = — 26) and this is only of the prescribed type if ¢ = 0
(Incg, loc. cit., pp. 330, 331). '

In this case, writing ¢ =dz/dx + 22, we have df/dx + 24’ (z)¢/d(x) =0 or
¢ = k/{¢ (x)}*, with k an arbitrary constant.

Thus the equation for z is J .

2
& T Gp
which is of the RiccaTr type.

Hence if ¢ # 0 the integral must involve logarithmic terms (INcE, loc. cit.), which
confirms the form of the solution already obtained. A special solution of (67) is
z = (¢ — 02)/é (x) where a®+ a(l — 0) = k0, so that the complete primitive can be
found in the usual way, but ¢ = 0 does not correspond to any case of ballistic importance.
(N.B.—c=01if D = 0, 1.e., if the propellant size is vanishingly small.)

An equation whose general form appears to agree with that of the canonical equations
given by Ince (chap. XIV), is (43), the ballistic equation for the case of a general rate-
of-burning law dependent on the pressure. For this equation to have solutions with
fixed critical points the coefficient of (dp/df)? must take one of a number of forms (Ince,
p- 326), and, by choice of F(p), this condition can be secured, but it appears that the
terms involving dp/df and p cannot be made to agree with those occurring in the typical
equations quoted by INCE.

An examination, admittedly cursory, of (43) (and other equations), therefore, seems
to lead to the conclusion that the second-order differential equations of ballistics possess
movable critical points. The special quadrature solutions given by (30) and (34) appear
to confirm this view.
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12. Summary and Conclusions.

In this paper an examination is made of various types of differential equation which
arise in internal ballistics, when the simple assumptions of rate-of-burning proportional
to pressure, or of non-resisted motion are discarded.

The equations are shown to be mostly irreducible, non-linear, and of the second order,
but in the case of a propellant shape preserving a constant surface area during burning,
they can be reduced to the first order, and finally transformed into equations of the
BrioT-BouqQuET type.

The existence of regular integrals is thus assured, except when the pressure-index «
takes values which make (1 — «)/(3 — 2«) a positive integer. An excluded case, for
example, is « = 2 and for this value the solution can be obtained by quadratures.

It is also shown that the cases for which « varies from 4/3 to 1 depend on the same
type of fundamental equation as those for which « is between 0 and 1, though, of course,
in different variables; thus these sets of cases are mathematically equivalent.

Most of the first order equations of internal ballistics can be written in the form
dy/dx = Py ++ Pyy + Poy? + Pyy?, where Py, Py, Py, etc., are functions of #, and, in
the case where no terms beyond 4 occur, the equation can be transformed into the
“ canonical ” form dy/dx = y* + P ().

A method of solution of equations of the above type is suggested as a power series in
y, the coefficients being functions of x, which are determined in terms of the function P
and its successive derivatives. A reversal of this series leads to the explicit expression
of y in terms of z.

The second order equations which arise when the propellant shape is other than of
constant burning surface are usually found to be irreducible, and are much less easy
to discuss.

The important equations of this order from the pure mathematical point of view are
those having fixed critical points, but the differential equations of ballistics, although
similar in some respects to such equations, do not appear to possess this property.

Several problems are left undiscussed ; thus there is no investigation of the equations
arising from Scheme II (the CHARBONNIER equations, I.B., p. 353) or of the problem of
resisted motion with a pressure-index burning law, as the analytical complexities appear
to be too serious.

The writer is conscious of the many gaps and loose ends in this paper, but he has tried
to show something of the analytical difficulties met with in ballistic problems, and the
attempts that have, so far, been made to overcome them.

This paper is submitted for publication with the approval of the Director of Artillery,
the Director of Naval Ordnance, and the Ordnance Committee, to whom sincere
acknowledgments are due.
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(Capt. A, C. GooLpEN, R.N.) and the Director of Ballistic Research (Dr. A. D. Crow)
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